Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.299
Filtrar
1.
J Physiol ; 602(8): 1703-1732, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38594842

RESUMO

We used whole-cell patch clamp to estimate the stationary voltage dependence of persistent sodium-current density (iNaP) in rat hippocampal mossy fibre boutons. Cox's method for correcting space-clamp errors was extended to the case of an isopotential compartment with attached neurites. The method was applied to voltage-ramp experiments, in which iNaP is assumed to gate instantaneously. The raw estimates of iNaP led to predicted clamp currents that were at variance with observation, hence an algorithm was devised to improve these estimates. Optionally, the method also allows an estimate of the membrane specific capacitance, although values of the axial resistivity and seal resistance must be provided. Assuming that membrane specific capacitance and axial resistivity were constant, we conclude that seal resistance continued to fall after adding TTX to the bath. This might have been attributable to a further deterioration of the seal after baseline rather than an unlikely effect of TTX. There was an increase in the membrane specific resistance in TTX. The reason for this is unknown, but it meant that iNaP could not be determined by simple subtraction. Attempts to account for iNaP with a Hodgkin-Huxley model of the transient sodium conductance met with mixed results. One thing to emerge was the importance of voltage shifts. Also, a large variability in previously reported values of transient sodium conductance in mossy fibre boutons made comparisons with our results difficult. Various other possible sources of error are discussed. Simulations suggest a role for iNaP in modulating the axonal attenuation of EPSPs. KEY POINTS: We used whole-cell patch clamp to estimate the stationary voltage dependence of persistent sodium-current density (iNaP) in rat hippocampal mossy fibre boutons, using a KCl-based internal (pipette) solution and correcting for the liquid junction potential (2 mV). Space-clamp errors and deterioration of the patch-clamp seal during the experiment were corrected for by compartmental modelling. Attempts to account for iNaP in terms of the transient sodium conductance met with mixed results. One possibility is that the transient sodium conductance is higher in mossy fibre boutons than in the axon shaft. The analysis illustrates the need to account for various voltage shifts (Donnan potentials, liquid junction potentials and, possibly, other voltage shifts). Simulations suggest a role for iNaP in modulating the axonal attenuation of excitatory postsynaptic potentials, hence analog signalling by dentate granule cells.


Assuntos
Fibras Musgosas Hipocampais , Sódio , Ratos , Animais , Terminações Pré-Sinápticas
2.
Science ; 383(6687): eadg6757, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38452088

RESUMO

The hippocampal mossy fiber synapse, formed between axons of dentate gyrus granule cells and dendrites of CA3 pyramidal neurons, is a key synapse in the trisynaptic circuitry of the hippocampus. Because of its comparatively large size, this synapse is accessible to direct presynaptic recording, allowing a rigorous investigation of the biophysical mechanisms of synaptic transmission and plasticity. Furthermore, because of its placement in the very center of the hippocampal memory circuit, this synapse seems to be critically involved in several higher network functions, such as learning, memory, pattern separation, and pattern completion. Recent work based on new technologies in both nanoanatomy and nanophysiology, including presynaptic patch-clamp recording, paired recording, super-resolution light microscopy, and freeze-fracture and "flash-and-freeze" electron microscopy, has provided new insights into the structure, biophysics, and network function of this intriguing synapse. This brings us one step closer to answering a fundamental question in neuroscience: how basic synaptic properties shape higher network computations.


Assuntos
Fibras Musgosas Hipocampais , Terminações Pré-Sinápticas , Fibras Musgosas Hipocampais/fisiologia , Fibras Musgosas Hipocampais/ultraestrutura , Terminações Pré-Sinápticas/fisiologia , Terminações Pré-Sinápticas/ultraestrutura , Transmissão Sináptica , Região CA3 Hipocampal , Células Piramidais , Humanos , Animais
3.
Elife ; 122024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38358390

RESUMO

The transcription factor Bcl11b has been linked to neurodevelopmental and neuropsychiatric disorders associated with synaptic dysfunction. Bcl11b is highly expressed in dentate gyrus granule neurons and is required for the structural and functional integrity of mossy fiber-CA3 synapses. The underlying molecular mechanisms, however, remained unclear. We show in mice that the synaptic organizer molecule C1ql2 is a direct functional target of Bcl11b that regulates synaptic vesicle recruitment and long-term potentiation at mossy fiber-CA3 synapses in vivo and in vitro. Furthermore, we demonstrate C1ql2 to exert its functions through direct interaction with a specific splice variant of neurexin-3, Nrxn3(25b+). Interruption of C1ql2-Nrxn3(25b+) interaction by expression of a non-binding C1ql2 mutant or by deletion of Nrxn3 in the dentate gyrus granule neurons recapitulates major parts of the Bcl11b as well as C1ql2 mutant phenotype. Together, this study identifies a novel C1ql2-Nrxn3(25b+)-dependent signaling pathway through which Bcl11b controls mossy fiber-CA3 synapse function. Thus, our findings contribute to the mechanistic understanding of neurodevelopmental disorders accompanied by synaptic dysfunction.


The human brain contains billions of neurons working together to process the vast array of information we receive from our environment. These neurons communicate at junctions known as synapses, where chemical packages called vesicles released from one neuron stimulate a response in another. This synaptic communication is crucial for our ability to think, learn and remember. However, this activity depends on a complex interplay of proteins, whose balance and location within the neuron are tightly controlled. Any disruption to this delicate equilibrium can cause significant problems, including neurodevelopmental and neuropsychiatric disorders, such as schizophrenia and intellectual disability. One key regulator of activity at the synapse is a protein called Bcl11b, which has been linked to conditions affected by synaptic dysfunction. It plays a critical role in maintaining specific junctions known as mossy fibre synapses, which are important for learning and memory. One of the genes regulated by Bcl11b is C1ql2, which encodes for a synaptic protein. However, it is unclear what molecular mechanisms Bcl11b uses to carry out this role. To address this, Koumoundourou et al. explored the role of C1ql2 in mossy fibre synapses of adult mice. Experiments to manipulate the production of C1ql2 independently of Bcl11b revealed that C1ql2 is vital for recruiting vesicles to the synapse and strengthening synaptic connections between neurons. Further investigation showed that C1ql2's role in this process relies on interacting with another synaptic protein called neurexin-3. Disrupting this interaction reduced the amount of C1ql2 at the synapse and, consequently, impaired vesicle recruitment. These findings will help our understanding of how neurodevelopmental and neuropsychiatric disorders develop. Bcl11b, C1ql2 and neurexin-3 have been independently associated with these conditions, and the now-revealed interactions between these proteins offer new insights into the molecular basis of synaptic faults. This research opens the door to further study of how these proteins interact and their roles in brain health and disease.


Assuntos
Fibras Musgosas Hipocampais , Sinapses , Animais , Camundongos , Fatores de Transcrição , Vesículas Sinápticas , Proteínas Supressoras de Tumor , Proteínas Repressoras
4.
Neurotoxicology ; 101: 36-45, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311184

RESUMO

Methamphetamine (METH) - induced cognitive impairments may be related to synaptic degeneration at mossy fiber terminals, critical for spatial memory formation in hippocampal circuits. We have previously found METH-induced neurodegeneration in the striatum by increasing the α-synuclein (α-SYN) level. However, whether and how the METH-induced mossy fiber degeneration is also blamed for the abnormal accumulation of α-SYN remains to be elucidated. Chronic METH exposure decreased mossy fiber density but upregulatedα-SYN and phosphorylated TAU (TAU-pSer396) in hippocampal CA3, associated with glial cell overactivation, axonal neuropathies, and memory impairment. Notably, the knockout of the α-SYN gene significantly alleviated the METH-induced mossy fiber degeneration and memory impairment. Meanwhile, the TAU-pSer396 accumulation and glial activation were ameliorated by α-SYN knockout. Our findings suggest an essential role of α-SYN in mediating METH-induced mossy fiber degeneration, providing promising therapeutic and prophylactic targets for METH-related neurodegenerative diseases.


Assuntos
Metanfetamina , Metanfetamina/toxicidade , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Fibras Musgosas Hipocampais/metabolismo , Hipocampo/metabolismo
5.
Elife ; 122024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38329474

RESUMO

Synaptic vesicles dock and fuse at the presynaptic active zone (AZ), the specialized site for transmitter release. AZ proteins play multiple roles such as recruitment of Ca2+ channels as well as synaptic vesicle docking, priming, and fusion. However, the precise role of each AZ protein type remains unknown. In order to dissect the role of RIM-BP2 at mammalian cortical synapses having low release probability, we applied direct electrophysiological recording and super-resolution imaging to hippocampal mossy fiber terminals of RIM-BP2 knockout (KO) mice. By using direct presynaptic recording, we found the reduced Ca2+ currents. The measurements of excitatory postsynaptic currents (EPSCs) and presynaptic capacitance suggested that the initial release probability was lowered because of the reduced Ca2+ influx and impaired fusion competence in RIM-BP2 KO. Nevertheless, larger Ca2+ influx restored release partially. Consistent with presynaptic recording, STED microscopy suggested less abundance of P/Q-type Ca2+ channels at AZs deficient in RIM-BP2. Our results suggest that the RIM-BP2 regulates both Ca2+ channel abundance and transmitter release at mossy fiber synapses.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Fibras Musgosas Hipocampais , Transmissão Sináptica , Animais , Camundongos , Transporte Biológico , Camundongos Knockout , Neurotransmissores , Sinapses , Peptídeos e Proteínas de Sinalização Intracelular/genética , Canais de Cálcio/metabolismo
6.
Cells ; 13(2)2024 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-38247806

RESUMO

Neurological diseases can lead to the denervation of brain regions caused by demyelination, traumatic injury or cell death. The molecular and structural mechanisms underlying lesion-induced reorganization of denervated brain regions, however, are a matter of ongoing investigation. In order to address this issue, we performed an entorhinal cortex lesion (ECL) in mouse organotypic entorhino-hippocampal tissue cultures of both sexes and studied denervation-induced plasticity of mossy fiber synapses, which connect dentate granule cells (dGCs) with CA3 pyramidal cells (CA3-PCs) and play important roles in learning and memory formation. Partial denervation caused a strengthening of excitatory neurotransmission in dGCs, CA3-PCs and their direct synaptic connections, as revealed by paired recordings (dGC-to-CA3-PC). These functional changes were accompanied by ultrastructural reorganization of mossy fiber synapses, which regularly contain the plasticity-regulating protein synaptopodin and the spine apparatus organelle. We demonstrate that the spine apparatus organelle and synaptopodin are related to ribosomes in close proximity to synaptic sites and reveal a synaptopodin-related transcriptome. Notably, synaptopodin-deficient tissue preparations that lack the spine apparatus organelle failed to express lesion-induced synaptic adjustments. Hence, synaptopodin and the spine apparatus organelle play a crucial role in regulating lesion-induced synaptic plasticity at hippocampal mossy fiber synapses.


Assuntos
Fibras Musgosas Hipocampais , Plasticidade Neuronal , Sinapses , Animais , Feminino , Masculino , Camundongos , Morte Celular , Denervação , Hipocampo , Fibras Musgosas Hipocampais/metabolismo , Sinapses/metabolismo , Plasticidade Neuronal/genética
7.
eNeuro ; 11(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38164567

RESUMO

Brain-derived neurotrophic factor (BDNF) is important in the development and maintenance of neurons and their plasticity. Hippocampal BDNF has been implicated in Alzheimer's disease (AD) because hippocampal levels in AD patients and AD animal models are often downregulated, suggesting that reduced BDNF contributes to AD. However, the location where hippocampal BDNF protein is most highly expressed, the mossy fiber (MF) axons of dentate gyrus granule cells (GCs), has been understudied, and not in controlled conditions. Therefore, we evaluated MF BDNF protein in the Tg2576 mouse model of AD. Tg2576 and wild-type (WT) mice of both sexes were examined at 2-3 months of age, when amyloid-ß (Aß) is present in neurons but plaques are absent, and 11-20 months of age, after plaque accumulation. As shown previously, WT mice exhibited high levels of MF BDNF protein. Interestingly, there was no significant decline with age in either the genotype or sex. Notably, MF BDNF protein was correlated with GC ΔFosB, a transcription factor that increases after 1-2 weeks of elevated neuronal activity. We also report the novel finding that Aß in GCs or the GC layer was minimal even at old ages. The results indicate that MF BDNF is stable in the Tg2576 mouse, and MF BDNF may remain unchanged due to increased GC neuronal activity, since BDNF expression is well known to be activity dependent. The resistance of GCs to long-term Aß accumulation provides an opportunity to understand how to protect vulnerable neurons from increased Aß levels and therefore has translational implications.


Assuntos
Doença de Alzheimer , Humanos , Masculino , Feminino , Camundongos , Animais , Lactente , Doença de Alzheimer/patologia , Fibras Musgosas Hipocampais/fisiologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Peptídeos beta-Amiloides/metabolismo , Giro Denteado/fisiologia
8.
J Pharmacol Exp Ther ; 388(2): 325-332, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-37643794

RESUMO

Organophosphate (OP) compounds are highly toxic and include pesticides and chemical warfare nerve agents. OP exposure inhibits the acetylcholinesterase enzyme, causing cholinergic overstimulation that can evolve into status epilepticus (SE) and produce lethality. Furthermore, OP-induced SE survival is associated with mood and memory dysfunction and spontaneous recurrent seizures (SRS). In male Sprague-Dawley rats, we assessed hippocampal pathology and chronic SRS following SE induced by administration of OP agents paraoxon (2 mg/kg, s.c.), diisopropyl fluorophosphate (4 mg/kg, s.c.), or O-isopropyl methylphosphonofluoridate (GB; sarin) (2 mg/kg, s.c.), immediately followed by atropine and 2-PAM. At 1-hour post-OP-induced SE onset, midazolam was administered to control SE. Approximately 6 months after OP-induced SE, SRS were evaluated using video and electroencephalography monitoring. Histopathology was conducted using hematoxylin and eosin (H&E), while silver sulfide (Timm) staining was used to assess mossy fiber sprouting (MFS). Across all the OP agents, over 60% of rats that survived OP-induced SE developed chronic SRS. H&E staining revealed a significant hippocampal neuronal loss, while Timm staining revealed extensive MFS within the inner molecular region of the dentate gyrus. This study demonstrates that OP-induced SE is associated with hippocampal neuronal loss, extensive MFS, and the development of SRS, all hallmarks of chronic epilepsy. SIGNIFICANCE STATEMENT: Models of organophosphate (OP)-induced SE offer a unique resource to identify molecular mechanisms contributing to neuropathology and the development of chronic OP morbidities. These models could allow the screening of targeted therapeutics for efficacious treatment strategies for OP toxicities.


Assuntos
Epilepsia , Estado Epiléptico , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Fibras Musgosas Hipocampais/fisiologia , Organofosfatos/efeitos adversos , Acetilcolinesterase , Estado Epiléptico/induzido quimicamente , Convulsões/induzido quimicamente , Modelos Animais de Doenças
9.
Proc Natl Acad Sci U S A ; 120(50): e2307509120, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38064513

RESUMO

Hilar mossy cells (MCs) are principal excitatory neurons of the dentate gyrus (DG) that play critical roles in hippocampal function and have been implicated in brain disorders such as anxiety and epilepsy. However, the mechanisms by which MCs contribute to DG function and disease are poorly understood. A defining feature of MCs is the promoter activity of the dopamine D2 receptor (D2R) gene (Drd2), and previous work indicates a key role for dopaminergic signaling in the DG. Additionally, the involvement of D2R signaling in cognition and neuropsychiatric conditions is well known. Surprisingly, though, the function of MC D2Rs remains largely unexplored. In this study, we show that selective and conditional removal of Drd2 from MCs of adult mice impaired spatial memory, promoted anxiety-like behavior, and was proconvulsant. To determine the subcellular expression of D2Rs in MCs, we used a D2R knockin mouse which revealed that D2Rs are enriched in the inner molecular layer of the DG, where MCs establish synaptic contacts with granule cells (GCs). D2R activation by exogenous and endogenous dopamine reduced MC to dentate GC synaptic transmission, most likely by a presynaptic mechanism. In contrast, exogenous dopamine had no significant impact on MC excitatory inputs and passive and active properties. Our findings support that MC D2Rs are essential for proper DG function by reducing MC excitatory drive onto GCs. Lastly, impairment of MC D2R signaling could promote anxiety and epilepsy, therefore highlighting a potential therapeutic target.


Assuntos
Epilepsia , Fibras Musgosas Hipocampais , Camundongos , Animais , Fibras Musgosas Hipocampais/fisiologia , Dopamina/metabolismo , Hipocampo/metabolismo , Epilepsia/genética , Epilepsia/metabolismo , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Giro Denteado/metabolismo
10.
Proc Natl Acad Sci U S A ; 120(51): e2312752120, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38091292

RESUMO

Somatostatin-expressing interneurons (SOMIs) in the mouse dentate gyrus (DG) receive feedforward excitation from granule cell (GC) mossy fiber (MF) synapses and provide feedback lateral inhibition onto GC dendrites to support environment representation in the DG network. Although this microcircuitry has been implicated in memory formation, little is known about activity-dependent plastic changes at MF-SOMI synapses and their influence on behavior. Here, we report that the metabotropic glutamate receptor 1α (mGluR1α) is required for the induction of associative long-term potentiation (LTP) at MF-SOMI synapses. Pharmacological block of mGluR1α, but not mGluR5, prevented synaptic weight changes. LTP at MF-SOMI synapses was postsynaptically induced, required increased intracellular Ca2+, involved G-protein-mediated and Ca2+-dependent (extracellular signal-regulated kinase) ERK1/2 pathways, and the activation of NMDA receptors. Specific knockdown of mGluR1α in DG-SOMIs by small hairpin RNA expression prevented MF-SOMI LTP, reduced SOMI recruitment, and impaired object location memory. Thus, postsynaptic mGluR1α-mediated MF-plasticity at SOMI input synapses critically supports DG-dependent mnemonic functions.


Assuntos
Fibras Musgosas Hipocampais , Plasticidade Neuronal , Camundongos , Animais , Fibras Musgosas Hipocampais/fisiologia , Plasticidade Neuronal/fisiologia , Interneurônios/fisiologia , Potenciação de Longa Duração/fisiologia , Sinapses/metabolismo , Somatostatina/metabolismo , Giro Denteado/metabolismo , Transmissão Sináptica
11.
Elife ; 122023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38079471

RESUMO

Epileptic seizures induce aberrant neurogenesis from resident neural stem cells (NSCs) in the dentate gyrus of the adult mouse hippocampus, which has been implicated in depletion of the NSC pool and impairment of hippocampal function. However, the mechanisms regulating neurogenesis after seizures remain unknown. Here, we demonstrate that Sonic hedgehog (Shh) from mossy cells is a major source of Shh signaling activity after seizures, by which mossy cells contribute to seizure-induced neurogenesis and maintenance of the NSC pool. Deletion of Shh from mossy cells attenuates seizure-induced neurogenesis. Moreover, in the absence of Shh from mossy cells, NSCs pool are prematurely depleted after seizure-induced proliferation, and NSCs have impaired self-renewal. Likewise, lack of Shh from mossy cells accelerates age-related decline of the NSC pool with accompanying reduction of self-renewal of NSCs outside the context of pathology such as seizures. Together, our findings indicate that Shh from mossy cells is critical to maintain NSCs and to prevent exhaustion from excessive consumption in aging and after seizures.


Assuntos
Proteínas Hedgehog , Fibras Musgosas Hipocampais , Camundongos , Animais , Fibras Musgosas Hipocampais/metabolismo , Proteínas Hedgehog/metabolismo , Hipocampo/metabolismo , Neurogênese , Envelhecimento , Convulsões
12.
Neurobiol Dis ; 188: 106346, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37931884

RESUMO

Sprouting of mossy fibers, one of the most consistent findings in tissue from patients with mesial temporal lobe epilepsy, exhibits several uncommon axonal growth features and has been considered a paradigmatic example of circuit plasticity that occurs in the adult brain. Clarifying the mechanisms responsible may provide new insight into epileptogenesis as well as axon misguidance in the central nervous system. Methyl-CpG-binding protein 2 (MeCP2) binds to methylated genomic DNA to regulate a range of physiological functions implicated in neuronal development and adult synaptic plasticity. However, exploring the potential role of MeCP2 in the documented misguidance of axons in the dentate gyrus has not yet been attempted. In this study, a status epilepticus-induced decrease of neuronal MeCP2 was observed in the dentate gyrus (DG). An essential regulatory role of MeCP2 in the development of functional mossy fiber sprouting (MFS) was confirmed through stereotaxic injection of a recombinant adeno-associated virus (AAV) to up- or down-regulate MeCP2 in the dentate neurons. Chromatin immunoprecipitation sequencing (ChIP-seq) was performed to identify the binding profile of native MeCP2 using micro-dissected dentate tissues. In both dentate tissues and HT22 cell lines, we demonstrated that MeCP2 could act as a transcription repressor on miR-682 with the involvement of the DNA methylation mechanism. Further, we found that miR-682 could bind to mRNA of phosphatase and tensin homolog (PTEN) in a sequence specific manner, thus leading to the suppression of PTEN and excessive activation of mTOR. This study therefore presents a novel epigenetic mechanism by identifying MeCP2/miR-682/PTEN/mTOR as an essential signal pathway in regulating the formation of MFS in the temporal lobe epileptic (TLE) mice. SIGNIFICANCE STATEMENT: Understanding the mechanisms that regulate axon guidance is important for a better comprehension of neural disorders. Sprouting of mossy fibers, one of the most consistent findings in patients with mesial temporal lobe epilepsy, has been considered a paradigmatic example of circuit plasticity in the adult brain. Although abnormal regulation of DNA methylation has been observed in both experimental rodents and humans with epilepsy, the potential role of DNA methylation in this well-documented example of sprouting of dentate axon remains elusive. This study demonstrates an essential role of methyl-CpG-binding protein 2 in the formation of mossy fiber sprouting. The underlying signal pathway has been also identified. The data hence provide new insight into epileptogenesis as well as axon misguidance in the central nervous system.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , MicroRNAs , Animais , Humanos , Camundongos , Giro Denteado/metabolismo , Epilepsia do Lobo Temporal/metabolismo , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , MicroRNAs/metabolismo , Fibras Musgosas Hipocampais , Serina-Treonina Quinases TOR/metabolismo
13.
Neuron ; 111(19): 3084-3101.e5, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37797581

RESUMO

Heterozygous mutations in the dual-specificity tyrosine phosphorylation-regulated kinase 1a (Dyrk1a) gene define a syndromic form of autism spectrum disorder. The synaptic and circuit mechanisms mediating DYRK1A functions in social cognition are unclear. Here, we identify a social experience-sensitive mechanism in hippocampal mossy fiber-parvalbumin interneuron (PV IN) synapses by which DYRK1A recruits feedforward inhibition of CA3 and CA2 to promote social recognition. We employ genetic epistasis logic to identify a cytoskeletal protein, ABLIM3, as a synaptic substrate of DYRK1A. We demonstrate that Ablim3 downregulation in dentate granule cells of adult heterozygous Dyrk1a mice is sufficient to restore PV IN-mediated inhibition of CA3 and CA2 and social recognition. Acute chemogenetic activation of PV INs in CA3/CA2 of adult heterozygous Dyrk1a mice also rescued social recognition. Together, these findings illustrate how targeting DYRK1A synaptic and circuit substrates as "enhancers of DYRK1A function" harbors the potential to reverse Dyrk1a haploinsufficiency-associated circuit and cognition impairments.


Assuntos
Transtorno do Espectro Autista , Animais , Camundongos , Encéfalo , Fibras Musgosas Hipocampais/fisiologia , Parvalbuminas , Reconhecimento Psicológico , Sinapses/fisiologia
14.
Cell Mol Neurobiol ; 43(8): 4007-4022, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37874456

RESUMO

Growing evidence supports the notion that brain-derived neurotrophic factor (BDNF) and lactate are potent modulators of mammalian brain function. The modulatory actions of those biomolecules influence a wide range of neuronal responses, from the shaping of neuronal excitability to the induction and expression of structural and synaptic plasticity. The biological actions of BDNF and lactate are mediated by their cognate receptors and specific transporters located in the neuronal membrane. Canonical functions of BDNF occur via the tropomyosin-related kinase B receptor (TrkB), whereas lactate acts via monocarboxylate transporters or the hydroxycarboxylic acid receptor 1 (HCAR1). Both receptors are highly expressed in the central nervous system, and some of their physiological actions are particularly well characterized in the hippocampus, a brain structure involved in the neurophysiology of learning and memory. The multifarious neuronal circuitry between the axons of the dentate gyrus granule cells, mossy fibers (MF), and pyramidal neurons of area CA3 is of great interest given its role in specific mnemonic processes and involvement in a growing number of brain disorders. Whereas the modulation exerted by BDNF via TrkB has been extensively studied, the influence of lactate via HCAR1 on the properties of the MF-CA3 circuit is an emerging field. In this review, we discuss the role of both systems in the modulation of brain physiology, with emphasis on the hippocampal CA3 network. We complement this review with original data that suggest cross-modulation is exerted by these two independent neuromodulatory systems.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Fibras Musgosas Hipocampais , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fibras Musgosas Hipocampais/metabolismo , Ácido Láctico/metabolismo , Hipocampo/metabolismo , Células Piramidais/metabolismo , Proteínas de Transporte/metabolismo , Região CA3 Hipocampal/metabolismo , Mamíferos/metabolismo
15.
Neuron ; 111(23): 3802-3818.e5, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37776852

RESUMO

Various specialized structural/functional properties are considered essential for contextual memory encoding by hippocampal mossy fiber (MF) synapses. Although investigated to exquisite detail in model organisms, synapses, including MFs, have undergone minimal functional interrogation in humans. To determine the translational relevance of rodent findings, we evaluated MF properties within human tissue resected to treat epilepsy. Human MFs exhibit remarkably similar hallmark features to rodents, including AMPA receptor-dominated synapses with small contributions from NMDA and kainate receptors, large dynamic range with strong frequency facilitation, NMDA receptor-independent presynaptic long-term potentiation, and strong cyclic AMP (cAMP) sensitivity of release. Array tomography confirmed the evolutionary conservation of MF ultrastructure. The astonishing congruence of rodent and human MF core features argues that the basic MF properties delineated in animal models remain critical to human MF function. Finally, a selective deficit in GABAergic inhibitory tone onto human MF postsynaptic targets suggests that unrestrained detonator excitatory drive contributes to epileptic circuit hyperexcitability.


Assuntos
Fibras Musgosas Hipocampais , Sinapses , Animais , Humanos , Fibras Musgosas Hipocampais/fisiologia , Sinapses/fisiologia , Potenciação de Longa Duração/fisiologia , Transdução de Sinais
16.
Cereb Cortex ; 33(18): 10047-10065, 2023 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-37522285

RESUMO

The neural cell adhesion molecule 2 (NCAM2) regulates axonal organization in the central nervous system via mechanisms that have remained poorly understood. We now show that NCAM2 increases axonal levels of beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), a protease that regulates axonal guidance. In brains of NCAM2-deficient mice, BACE1 levels are reduced in hippocampal mossy fiber projections, and the infrapyramidal bundle of these projections is shortened. This abnormal axonal organization correlates with impaired short-term spatial memory and cognitive flexibility in NCAM2-deficient male and female mice. Self-grooming, rearing, digging and olfactory acuity are increased in NCAM2-deficient male mice, when compared with littermate wild-type mice of the same sex. NCAM2-deficient female mice also show increased self-grooming, but are reduced in rearing, and do not differ from female wild-type mice in olfactory acuity and digging behavior. Our results indicate that errors in axonal guidance and organization caused by impaired BACE1 function can underlie the manifestation of neurodevelopmental disorders, including autism as found in humans with deletions of the NCAM2 gene.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Animais , Feminino , Humanos , Masculino , Camundongos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Hipocampo/metabolismo , Fibras Musgosas Hipocampais , Moléculas de Adesão de Célula Nervosa/genética , Moléculas de Adesão de Célula Nervosa/metabolismo
17.
Cells ; 12(14)2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37508553

RESUMO

Muscarinic acetylcholine receptors are well-known for their crucial involvement in hippocampus-dependent learning and memory, but the exact roles of the various receptor subtypes (M1-M5) are still not fully understood. Here, we studied how M1 and M3 receptors affect plasticity at the mossy fiber (MF)-CA3 pyramidal cell synapse. In hippocampal slices from M1/M3 receptor double knockout (M1/M3-dKO) mice, the signature short-term plasticity of the MF-CA3 synapse was not significantly affected. However, the rather unique NMDA receptor-independent and presynaptic form of long-term potentiation (LTP) of this synapse was much larger in M1/M3-deficient slices compared to wild-type slices in both field potential and whole-cell recordings. Consistent with its presynaptic origin, induction of MF-LTP strongly enhanced the excitatory drive onto single CA3 pyramidal cells, with the effect being more pronounced in M1/M3-dKO cells. In an earlier study, we found that the deletion of M2 receptors in mice disinhibits MF-LTP in a similar fashion, suggesting that endogenous acetylcholine employs both M1/M3 and M2 receptors to constrain MF-LTP. Importantly, such synergism was not observed for MF long-term depression (LTD). Low-frequency stimulation, which reliably induced LTD of MF synapses in control slices, failed to do so in M1/M3-dKO slices and gave rise to LTP instead. In striking contrast, loss of M2 receptors augmented LTD when compared to control slices. Taken together, our data demonstrate convergence of M1/M3 and M2 receptors on MF-LTP, but functional divergence on MF-LTD, with the net effect resulting in a well-balanced bidirectional plasticity of the MF-CA3 pyramidal cell synapse.


Assuntos
Acetilcolina , Fibras Musgosas Hipocampais , Camundongos , Animais , Fibras Musgosas Hipocampais/fisiologia , Receptor Muscarínico M1 , Camundongos Knockout , Hipocampo , Células Piramidais/fisiologia , Receptor Muscarínico M2/genética
18.
Neurobiol Dis ; 184: 106190, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37290578

RESUMO

Embryonic and early postnatal deletion of the gene phosphatase and tensin homolog (PTEN) results in neuronal hypertrophy, formation of aberrant neural networks and spontaneous seizures. Our previous studies document that deletion of PTEN in mature neurons also causes growth of cortical neuron cell bodies and dendrites, but it is unknown how this growth alters connectivity in mature circuits. Here, we explore consequences of deleting PTEN in a focal area of the dentate gyrus in adult male and female mice. PTEN deletion was accomplished by injecting AAV-Cre unilaterally into the dentate gyrus of double transgenic mice with lox-P sites flanking exon 5 of the PTEN gene and stop/flox tdTomato in the Rosa locus (PTENf/f/RosatdTomato). Focal deletion led to progressive increases in the size of the dentate gyrus at the injection site, enlargement of granule cell bodies, and increases in dendritic length and caliber. Quantitative analysis of dendrites by Golgi staining revealed dramatic increases in spine numbers throughout the proximo-distal extent of the dendritic tree, suggesting that dendritic growth is sufficient to induce new synapse formation by input neurons with intact PTEN expression. Tract tracing of input pathways to the dentate gyrus from the ipsilateral entorhinal cortex and commissural/associational system revealed that laminar specificity of termination of inputs is maintained. Mossy fiber axons from PTEN-deleted granule cells expanded their terminal field in CA3 where PTEN expression was intact and supra-granular mossy fibers developed in some mice. These findings document that persistent activation of mTOR via PTEN deletion in fully mature neurons re-initiates a state of robust cell-intrinsic growth, upending connectional homeostasis in fully mature hippocampal circuits.


Assuntos
Corpo Celular , Fibras Musgosas Hipocampais , Camundongos , Animais , Fibras Musgosas Hipocampais/fisiologia , Hipocampo/fisiologia , Camundongos Transgênicos , Dendritos , Giro Denteado
19.
BMC Biol ; 21(1): 96, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37101159

RESUMO

BACKGROUND: Mossy cells comprise a large fraction of excitatory neurons in the hippocampal dentate gyrus, and their loss is one of the major hallmarks of temporal lobe epilepsy (TLE). The vulnerability of mossy cells in TLE is well known in animal models as well as in patients; however, the mechanisms leading to cellular death is unclear. RESULTS: Transient receptor potential melastatin 4 (TRPM4) is a Ca2+-activated non-selective cation channel regulating diverse physiological functions of excitable cells. Here, we identified that TRPM4 is present in hilar mossy cells and regulates their intrinsic electrophysiological properties including spontaneous activity and action potential dynamics. Furthermore, we showed that TRPM4 contributes to mossy cells death following status epilepticus and therefore modulates seizure susceptibility and epilepsy-related memory deficits. CONCLUSIONS: Our results provide evidence for the role of TRPM4 in MC excitability both in physiological and pathological conditions.


Assuntos
Epilepsia do Lobo Temporal , Animais , Potenciais de Ação , Epilepsia do Lobo Temporal/metabolismo , Epilepsia do Lobo Temporal/patologia , Fibras Musgosas Hipocampais/metabolismo , Fibras Musgosas Hipocampais/patologia , Canais de Cátion TRPM/metabolismo
20.
Commun Biol ; 6(1): 446, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-37095324

RESUMO

The long-standing hypothesis that synapses between mossy fibers (MFs) and cerebellar granule cells (GCs) are organized according to the origins of MFs and locations of GC axons, parallel fibers (PFs), is supported by recent findings. However, the mechanisms of such organized synaptic connections remain unknown. Here, using our technique that enabled PF location-dependent labeling of GCs in mice, we confirmed that synaptic connections of GCs with specific MFs originating from the pontine nucleus (PN-MFs) and dorsal column nuclei (DCoN-MFs) were gently but differentially organized according to their PF locations. We then found that overall MF-GC synaptic connectivity was biased in a way that dendrites of GCs having nearby PFs tended to connect with the same MF terminals, implying that the MF origin- and PF location-dependent organization is associated with the overall biased MF-GC synaptic connectivity. Furthermore, the development of PN-MFs preceded that of DCoN-MFs, which matches the developmental sequence of GCs that preferentially connect with each type of these MFs. Thus, our results revealed that overall MF-GC synaptic connectivity is biased in terms of PF locations, and suggested that such connectivity is likely the result of synaptic formation between developmental timing-matched partners.


Assuntos
Cerebelo , Fibras Musgosas Hipocampais , Camundongos , Animais , Sinapses
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...